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remote sensing based on satellite imaging, and drone
(that is, unmanned aerial vehicle, UAV) imaging. In this
paper, the main application fields studied are
agriculture, forestry, and private urban gardens, in all of
which remote sensing imaging can have many different
purposes.

Precision farming technologies aim to optimize the use
of farming inputs both spatially and temporally for
improved economic outcomes and reduced
environmental impacts of farming. In precision farming,
a field is considered as a heterogeneous entity with
variable topography, soil properties, weed infestation,
and yield potential, whereby management practices are
tailored spatially and temporally (Finger et al., 2019).
Precision farming thus strongly relies on site-specific
sensing of variables that are essential for management
decisions. Georeferencing techniques and spatial
mapping are important elements in precision farming.

Introduction

The development of digitalization and measurement
technologies in recent decades has enabled digital
devices and sensors to produce huge amounts of data
that has great potential in optimizing processes related
to production chains or service production. In the field
of bioeconomy, the main production processes are
related to food and biomass production. Digitalization
provides a wide variety of opportunities to support,
manage, and monitor production based on data
collected from the field.

Image-based data collection and analysis provides a
huge potential to support these goals. Visual data
collected from agricultural fields enables automated
analysis tasks and can provide real-time information
on production status. To acquire suitable visual
information, basically two different alternatives exist:

A Year Acquiring and Publishing Drone Aerial
Images in Research on Agriculture, Forestry, and

Private Urban Gardens
Olli Niemitalo, Eero Koskinen, Jari Hyväluoma, Outi Tahvonen, Esa

Lientola, Henrik Lindberg, Olli Koskela & Iivari Kunttu

Drone imaging has been shown to have increasing value in monitoring and analysing different kinds of
processes related to agriculture and forestry. In long-term monitoring and observation tasks, huge
amounts of image data are produced and stored. Environmental drone image datasets may have value
beyond the studies that produced the data. A collection of image datasets from multiple data producers
can, for example, provide more diverse training input for a machine learning model for vegetation
classification, compared with a single dataset limited in time and location. To ensure reproducible
research, research data such as image datasets should be published in usable and undegraded form,
with sufficient metadata. Timely storage in a stable research data repository is recommended, to avoid
loss of data. This work presents research datasets of 2020 drone images acquired from agricultural and
forestry research sites of Häme University of Applied Sciences, and from Hämeenlinna urban areas.
Those images that do not contain personal data are made freely available under a Creative Commons
Attribution license. For images containing personal data, such as images of private homes, privacy-
preserving forms of data sharing may be possible in the future.

A single observation that is inconsistent with some generalization points to the falsehood of
the generalization, and thereby 'points beyond itself'.

Ian Hacking
Philosopher of science
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Spatial information can be collected with scanners
mounted in tractors (Pallatino et al., 2019) or using
satellite imagery (Segarra et al., 2020).

As well, drones have increasingly been used to collect
data on several features relevant for precision
agriculture (Tsouros et al., 2019). Compared with
satellite-based remote sensing, drone technology can
produce images with considerably higher spatial
resolution in the centimeter range. Also, the temporal
resolution of drone-based imagery can be decided by
the user, which leads to flexibility in comparison with
satellite data. Drones have also been used for research
purposes in monitoring field experiments (Viljanen et
al., 2018, Dehkordi et al., 2020). Non-destructive
monitoring of vegetation is a major benefit for
practical agronomy as well as for research use. Drone
aerial imaging has been utilized in a wide range of
agricultural applications.

Some of the most common applications of drone
imaging in precision agriculture are weed mapping
and management, vegetation growth monitoring and
yield estimation, vegetation health monitoring, and
irrigation management (Tsouros et al., 2019). Imaging
has been used in monitoring many vegetation traits,
for example, biomass amount (ten Harkel et al., 2020),
nitrogen status (Caturegli et al., 2016), moisture and
plant water stress status (Hoffmann et al., 2016),
temperature (Sagan et al., 2019), and various
vegetation indices (Viljanen et al., 2018). Deep
learning-based prediction of crop yield from drone
aerial images has also shown promising results
(Nevavuori et al., 2019, Nevavuori et al., 2020).

In the field of forestry, drone-based photogrammetric
methods can be used in several different ways. The
methods used may provide general forest inventory
data that focuses on common stand variables such as
volume and height (Tuominen et al., 2017). Practical
forest planning in Finland based on drone-collected
photogrammetric data is rapidly advancing and is
currently being piloted. Drones have proven especially
useful in detection and inventory of various forest
damage areas, such as windthrow areas (Mokros et al.,
2017, Panagiotidis et al., 2019) and bark beetle
outbreak areas (Näsi et al., 2015, Briechle et al., 2020).
Drones have been successfully used in various forest
fire suppression and prevention tasks for several years
(Ollero et al., 2006, Akhloufi et al., 2020). Increasing

demand to safeguard forest biodiversity has also
encouraged the use of photogrammetry-based methods.
These methods have proven to be a useful inventory
tool, when important structural factors such as keystone
species like aspen (Viinikka et al., 2020), standing dead
trees (Briechle et al., 2020), or coarse woody debris (Thiel
et al., 2020) are located in a forest landscape.

In the area of private urban gardening, drone-based
imaging may provide new approaches to monitor the
effects of gardening practices on the vegetation and on
carbon sequestration. In low-density housing areas, the
surface coverage pattern is typically very diverse,
consisting of numerous individual plots and gardens.
Homeowners reshape and modify private domestic
gardens based on personal preferences and individual
gardening practices. The role and meaning of vegetation
and gardening practices vary, resulting in plot-to-plot
variations in carbon sequestration and
evapotranspiration, which affects stormwater
management and the degree of reduction in the urban
heat island phenomenon. Approaches to sustainable
urban development have put an increasing interest in
low-density housing areas that cover large areas in cities.
A single plot is not the main focus, but rather the entity
they form together. This raises the challenge to find
suitable methods for easily studying the on-going
changes at multiple scales to provide data both on the
quality and quantity of vegetation. Plot and block scale
choices and elements define housing area scale
attributes.

This article describes vegetation monitoring-related
aerial image acquisition by Häme University of Applied
Sciences (HAMK) using drones, in 2020, both the
processes and experiences gained. Apart from the image
data, the main research in three areas is to be published
separately. In total, approximately 200,000 image files,
approximately 1 TB in size, are in the process of being
published openly (see Data Availability). Particular
features of the presented datasets are including the
original image files, using a multispectral camera, and
that one of the research sites, Mustiala biochar field, was
imaged several times over the growing season with some
near-simultaneous satellite imagery available from
public sources. Based on a search by the authors using
Google Dataset Search
(https://datasetsearch.research.google.com/) at the time
of writing, drone aerial image datasets are rapidly
increasing in number, but are typically orders of
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magnitude smaller than the datasets presented in this
work and do not usually include the original image
files, although they may be available upon request. In
this article, we also discuss the benefits and challenges
of publishing drone image datasets.

Methods

Drone aerial image datasets were collected from
multiple sites in Kanta-Häme, in southern Finland.
Three of the sites (Fig. 1) are presented in this work:

1. Mustiala biochar field (Fig. 6) is located at the
Mustiala educational and research farm of Häme
University of Applied Sciences, in Tammela
(60°49’ N, 23°45’24’’ E). The biochar experiment
consists of 10 adjacent plots, each of size 10 m ×
100 m (1000 m²), and with a total area of 1 ha.
Biochar soil amendment was applied on five of
the plots at a rate of ca. 20 t/ha. The other five
plots were control treatments without biochar
amendment. Ground control points (GCPs) were
placed covering the field in a roughly 100 m × 100
m die face-5 pattern (see Fig. 6). GCPs were 29 cm
× 29 cm sized black-and-yellow 2x2
checkerboard-style cut-outs of A3 prints. They
were georeferenced with the aid of a real-time
kinematics (RTK) capable Trimble Geo 7X (H-
Star) hand-held GPS receiver.

2. Evo old forest (Fig. 3) consists of seven separate
stands all located in the Evo state forest. The
stands, with a pooled area of 160 ha, are
dominated by mature Norway spruce (Picea
abies) with an age range of 80-120 years. All
stands have a rather high amount of dead

standing trees, known to be important for
biodiversity, for example, for cavity-nesting birds.
The standing dead trees were catalogued in 2019-
2020 to function as reference data for
photogrammetric methods.

3. Hämeenlinna private urban gardens consist of
approximately 5-10 domestic gardens in the
sparsely populated urban areas of Hämeenlinna.

The drone used in all of the imaging missions was a DJI
Matrice 210 RTK V2 quadcopter camera drone. The
camera payload for each mission was selected (see Fig.
2) from the following cameras:

1. DJI ZenMuse X5S FC6520 – a 3-axis gimbal-
stabilized RGB camera with a 15 mm focal length
lens, operated in sRGB JPEG still mode, software
version 01.07.0044,

2. DJI ZenMuse XT2 (radiometric) – a 3-axis gimbal-
stabilized camera with a 13 mm focal length lens
for the thermal sensor operated in radiometric
JPEG mode, and an 8 mm focal length lens for the
RGB sensor, software version 06.02.20, and

3. Micasense Altum – a radiometric multispectral
camera with dedicated optics for each channel,
separately timed and triggered from the other
cameras, software version 1.3.6, with sunlight
sensor DLS2.

Flights were planned in Dji Pilot software. Flight
parameters were specified as best fit for the present
environment, light and weather conditions, area size,
and camera type. Flight parameters for Evo old forest

Figure 1. Research site locations (white dots) in Finland.
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were the following: altitude 120 m above ground, side
overlap 80 , frontal overlap 80 , speed 3-5 m/s,
camera triggering mode: time interval. For the Mustiala
biochar field, the following parameters were mostly
used: altitude 80 m, side overlap 85 , frontal overlap
83 , and speed 2-3 m/s. The field was imaged multiple
times over the growing season, using identical
parameters. For Hämeenlinna private urban gardens,
flight parameters were as follows: altitude 50 m, side
overlap 85 , frontal overlap 85 , and speed 3 m/s.
When cameras were used simultaneously, overlap was
specified for the Micasense Altum, resulting in a higher
overlap for other cameras. Flights were scheduled (Fig.
2) between 11.00 am and 15.00 pm (UTC+3), from May
to August 2020.

The DJI gimbal cameras were nadir-pointing, that is,
straight down, and synchronously triggered by the DJI
Pilot software. The Micasense Altum was triggered by
its own timer and pointed straight down in the drone’s
internal coordinate system. The Micasense Altum
images of a Micasense calibrated reflectance panel
(Fig. 5) were taken before or after each imaging
mission, or both. A Geotrim Trimnet VRS virtual RTK
station was used, while the DJI cameras received RTK
GPS information from the drone. The Micasense Altum
utilized its own GPS receiver.

For the figures used in this article, Agisoft Metashape
Professional version 1.7.0 (Agisoft 2020a) was used to
color-correct the Micasense Altum images and to
generate an orthomosaic of the Mustiala biochar field
using the workflow described in Agisoft (2020b),
without the use of ground control points. For Figures 5
and 7, single Micasense Altum photos from the
Mustiala biocarbon field mission dated 2020-05-22,

10:00–12:00 (UTC), were exported in calibrated form
from Agisoft MetaShape, and their blue, green, and red
spectral channels were stacked (aligned) in Adobe
PhotoShop version 21.2.4 with distortion correction. The
Micasense Altum radiance and reflectance images (Figs.
4-7) and the Sentinel-2 satellite image of Figure 6 were
converted to the sRGB color space in GIMP version
2.10.18 by assigning an sRGB gamma=1 color profile, by
adjusting brightness in the curves tool using a linear
ramp crossing the origin, and by converting to sRGB
color profile using a relative colorimetric rendering
intent. Geographical illustrations were made in QGIS
version 3.12.2 (QGIS Development Team 2020).

For a comparison with the aerial images, a Sentinel-2
satellite image (Fig. 6) of the Mustiala biochar field was
manually selected and retrieved from the Copernicus
Open Access Hub (Copernicus Sentinel Data 2020) for a
cloud-free day that coincided with a drone imaging
mission on 2020-05-22. For Figure 7, machine learning
image segmentation of sRGB-color space images in 0.1
m / pixel resolution was done using the DroneDeploy
Aerial Segmentation Benchmark U-Net model “keras
baseline” run gg1z3jjr by Stacey Svetlichnaya
(DroneDeploy 2019), using a tile size of 300 × 300 pixels.

Results

The GCP location data and most of the acquired aerial
images are being made publicly available (see section
Data Availability). Figure 3 shows the camera locations
for all individual images taken during the Evo old forest
imaging missions. Figure 4 shows a sample image from
each camera from a Mustiala biochar field imaging
mission on 2020-05-22. Before that flight, an image was
taken of the calibrated reflectance panel (Fig. 5). Near-

Figure 2.The 2020 imaging mission schedule for the research sites, with the camera payload indicated.
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Figure 3. Evo old forest research sites (colored areas) and camera GPS locations of individual drone images (black
dots). Some Micasense Altum images were taken on the way to or from the takeoff and landing site due to lack of

drone-camera communication. (Map: National Land Survey of Finland Topographic Database 01/2021.)

Figure 4. Uncalibrated sample drone images from Mustiala biochar field, captured with the drone
flying at an altitude of 80 m from the ground. The Micasense Altum spectral channel images are

(from left to right): blue, green, red, near infrared, red edge, and thermal. The DJI XT2 images
were obtained on a separate flight and are visible (left) and thermal (right).
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Figure 5. A calibrated reflectance panel (Micasense) placed on the Mustiala biochar field,
imaged hand-held using the Micasense Altum multispectral camera.

Figure 6.The Mustiala biochar field on 2020-05-22. Left: A 4 cm resolution drone orthomosaic, an
artificial view straight down, made of Micasense Altum multispectral camera images without the

use of ground control points (GCPs), acquisition time 10:20 to 10:27 (UTC). The geolocation error of
GCPs was at most 0.8 m. Right: A 10 m resolution Sentinel-2 satellite bottom-of-atmosphere
corrected reflectance image (Copernicus Sentinel Data 2020), acquisition time 09:50 (UTC).

simultaneous drone and satellite imagery from that
day are shown for comparison in Figure 6. A single
image and an orthomosaic built from multiple images
are presented for comparison in Figure 7, together with
their machine learning image segmentation. For the
Mustiala biochar field, the location of the GCPs were
resolved with a horizontal and a vertical accuracy of 0.1
m, as reported in the shapefile from the hand-held RTK
GPS receiver.

Discussion and Conclusions

We encountered many technical challenges during data
collection. Interoperability problems between drone and
camera systems from different manufacturers prevented
camera triggering by the drone and tagging images with
high-accuracy RTK GPS information. A possible time
zone misconfiguration affected image time stamping.
Although automatic flight logs were generated, they were
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Figure 7. A single drone image (top left) aligned to a drone orthomosaic (top right), both using the Micasense Altum
camera. The single image shows fine detail of complex objects better than the orthomosaic, at the cost of not being an
orthoimage. Using an off-the-shelf U-Net machine learning model trained on orthomosaics (DroneDeploy 2019), the
images were segmented into classes: ground (white), vegetation (green), building (red), water (orange), and cars and

clutter (not found), overlaid on the single image (bottom left) and the orthomosaic (bottom right).

static scene, made for example in a post-processing
pipeline that produces a static 3-d point cloud, either as
an intermediate step or as the final product. The
planning of drone aerial imaging has been studied and
reviewed by (Tmuši et al., 2020), which covers choices
such as camera angle and flight pattern.

Much consideration should be given to the process of
publication of research data from high-resolution aerial
imaging missions. Aspects to consider include data
storage and availability, software compatibility, the
rights of data producers, the rights of possible data
subjects, license agreements of processing software, and
others.

Open publication of research data improves the
reproducibility of science, and reduces barriers to
participating in science and utilizing scientific data and
results, especially for under-resourced and under-
represented participants. For academic data producers,
the growing recognition of data as research output (see
San Francisco Declaration on Research Assessment

insufficient to answer all questions arising in later
interpretation of the collected data, which resulted in
increased work wrangling the data. It would be
advisable for further work going forward to
complement automatic logs with notes about the
settings used and both operator intent and actions.

Selecting the flight parameters turned into something
of an “art in itself”. Flight speed, altitude, side and
frontal overlap, camera orientation, and triggering
mode significantly influenced the image results. For
example, flight altitude requires a compromise
between image resolution and flight time. Lowering
the altitude increases the flight time, which is
accompanied by possible in-flight battery depletion,
making further use of the images more complicated by
more dynamic scenes.

For photometric applications, rapidly changing light
conditions can be a problem even for short flights. As
well, movement from the combination of windy
weather and vegetation invalidates the assumption of a
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and buildings managed by a private person, or by their
family. GDPR requires that before personal data can be
handled for a purpose, the data subject’s voluntary
consent for that purpose must be obtained. A data
subject also has the right to be forgotten, that is, to
bindingly request that their personal data be erased
without excessive delay. National laws may still allow
legitimate scientific research that protects data privacy.
Nevertheless, a data subject’s rights may bar
redistribution or open publication of personal data
under an irrevocable license, such as any of the popular
Creative Commons licenses, possibly even when a data
subject proactively authors the data as free speech.

The image dataset concerning Hämeenlinna private
urban gardens was collected with informed consent by
the data subjects, the homeowners. It was deemed
necessary to deposit the data in a fully closed manner, at
least for the time being, while the legal landscape of
personal data is still developing. The EU has proposed a
Data Governance Act (COM/2020/767 final) following a
European Strategy for Data (COM/2020/66 final). The
Data Governance Act defines roles and mechanisms for
altruistic data sharing in managed data ecosystems.
Among other things, the act is intended to streamline
handling of requests by authorized users to access data,
on the condition that the data subject has consented to
handling of the data for the requested purpose.

Returning to our case study, unlike the presented aerial
images captured mostly 80 m above ground, images
from a closer range (Fig. 5) would allow distinguishing
not only trees, but also individual small plants. Likewise,
it would be possible to identify and count the plants and
analyze their physical characteristics (allometry) and
health.

Drone image data is being increasingly utilized in
machine learning, as exemplified by research cited
above in the Introduction. The purpose of a machine
learning model might be, for example, to segment an
input image into different class labels (Fig. 7). Class label
masks of drone imagery could be converted to lower-
resolution ground truth class density data for
interpreting satellite imagery. In semi-supervised
learning, unlabeled images would also be included to
help the model better capture the natural joint
probability distribution of the images and segmentation.
Such uses make general-use unlabeled data valuable as a
research output, thereby complementing the existing

2012) may bring financial incentives to more widely
publish research data. Incentives by science funders
may be applied retroactively. A major practical reason
to publish research data is the possibility that a dataset
may have tremendous utility value outside the research
project, far beyond the organization that produced it.
Many possible later uses of data cannot be anticipated
at the time of its creation and collection.

Not all research data that is openly published remains
available. As an example, Khan et al. (2021) were only
able to retrieve 94 out of 121 open-access medical
ophthalmology imaging datasets. Storing research data
in an established repository such as Zenodo
(https://zenodo.org/) gives a level of guarantee of data
longevity. It also allows obtaining a Digital Object
Identifier (DOI) for sharing and citing the data. Upon a
recent successful storage quota application by HAMK,
the image datasets presented in this article are being
stored and published in Fairdata services, funded by
the Ministry of Education and Culture (Finland).
Publication of research data in a repository effectively
forces the storage of the data together with metadata
describing the data, ownership of the data, and its
usage license. The additional information resolves
many ambiguities when using the data. Structured
metadata in repositories ensures the dataset is indexed
in research databases.

A repository may also allow incremental publication of
data. If publishing the data takes place this way,
already during its collection instead of at the end of a
research project, then use of and citation of the data
outside of the data producing organization can start
much earlier. Accelerated publication also ensures that
the data or information of concern is not lost during
the project or when personnel leave the project.
Academic data producers typically have an interest in
priority publication of their research. Early publication
of general-use research data, such as the image
datasets presented in this article, is less likely to
conflict with that interest, compared to early open
publication of all data vital to the main publication.

Location data from an image or other information
about a person or object that can be associated with a
person, either directly or using additional information,
is likely to be considered as “personal data” by the EU’s
General Data Protection Regulation (GDPR). Examples
of such objects in aerial imagery include vehicles, land,
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Compression artifacts that arise from lossy image
compression methods such as JPEG might interfere with
radiometric analyses. On the other hand, compared to
lossy compression, lossless image compression results in
significantly larger image files, increasing the cost of
storage and transfer. Storage space requirements of
image datasets could be eased somewhat by re-encoding
lossless TIFF files, using a more efficient lossless method
than what is available from the camera. However,
rewriting the image files might also detrimentally affect
metadata or other extra data, reducing the usability of
the files. Image file metadata could be restored by
transferring it from the original file using tools such as
ExifTool and Exiv2. Usability of any modified original
files should be tested at least in the most likely
processing pipelines available. Rewriting of image files
may be necessary to mask out personal information.

For geographical image data, it is important to also
publish metadata describing the radiometric quality and
the location accuracy. Information about things that
affect illumination, such as clouds and sun, as well as
calibration images and light sensor data, can be
important for future users. Processing pipelines should
be described, and when possible, source code and
operation environment or information likewise
included. For more information on quality assurance
data and other important metadata, see Aasen et al.
(2018) and Tmuši et al. (2020).

The image datasets presented in this work consist
mainly of unaltered raw images directly from cameras.
Publishing the raw data without embargo also became
an effective way to distribute the data within the HAMK
organization, as well as outside it. Another rationale
behind the decision to publish not only post-processed
data products, but also raw primary data, was that data
users might wish to apply their own processing pipelines
to ensure uniform processing of all their input data. An
example of a data product is an orthomosaic (Fig. 6),
which is straightforward to use in various applications
and valuable in providing a visual overview of data. As
demonstrated in Figure 7, the visual clarity of an
orthomosaic might not be quite as high as that of the
source material, the individual images, with differences
that affect labeling by a machine learning model. In the
future, novel photogrammetry pipelines will likely result
in data products of higher quality than what is
achievable using today’s tools — if the raw data is still
available.

situation and future of labeled and unlabeled data.
Machine learning also benefits from more diverse data,
for example, from image datasets collected at an
ecologically diverse set of locations. Big data in such
cases can come from many small data.

Data producers may have reasons not to disclose their
raw data. In such cases, other, somewhat futuristic
forms of information sharing may be possible. In
federated learning, data holders combine their efforts
in a coordinated fashion to train a shared machine
learning model, without communicating their original
data. Alternatively, a generative model could be used to
collect non-private artificial samples from the
approximate distribution of the original data, while
preserving the privacy of the original data points,
typically measured by differential privacy. Depending
on the amount of original data and required degree of
privacy, generated samples may be of sufficient quality
to be used similarly to the original data. For a privacy-
preserving generative method suitable for images, see
Chen et al. (2020).

The author of a dataset consisting of drone images may
wish to limit data use. A photograph taken for scientific
purposes by equipment under automatic control is
unlikely to be considered as creative work and would
not be protected by copyright as such. In the United
States, a dataset can be copyrighted as a compilation if
it is sufficiently original in selection, coordination, or
arrangement, but the copyright of the dataset does not
extend to any non-copyrightable data items (U.S.
Copyright Office, 2021). Similarly, for EU-based
authors, national implementations of the Database
Directive (96/9/EC) enable copyright of a dataset as a
creative collection. Separately from copyright, the
directive enables sui generis protection of non-creative
datasets based on substantial investment, with a 15-
year term of protection (European Commission, 2018).
In any case, if a separate contract is made between the
dataset holder and its retriever, binding clauses in the
contract may limit redistribution and use of the dataset
by the retriever. For example, commercial use of a
dataset by its retriever may be prohibited.

Legal aspects aside, when collecting and sharing data,
care should be taken to ensure that the data will be
delivered in a format that preserves sufficient quality,
preferably in a format that is openly standardized, that
is, not a proprietary, software-specific format.
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