
Technology Innovation Management Review February 2016 (Volume 6, Issue 2)

28www.timreview.ca

License Compliance in Open Source
Cybersecurity Projects

Ahmed Shah, Selman Selman, and Ibrahim Abualhaol

Introduction

There are many types of open source cybersecurity
packages that developers can leverage for product devel-
opment and include within their proprietary products.
Examples include penetration testing software tools
that assist with identifying vulnerabilities and intrusion
detection tools that are used to detect cyber-attacks.
However, whether or not an open source package can
be included within a commercial product will depend
on the package license and the extent to which it re-
stricts commercial activities such as the sale of the soft-
ware and keeping derivative code confidential.

For the purposes of this article, we divide licenses into
two categories: permissive and restrictive. The per-
missive category includes commercial friendly licenses,

such as BSD, Apache, and MIT. In contrast, the restrict-
ive category includes comparatively commercial un-
friendly licenses, such as the GPL, that restrict the sale
of software that includes an open source package with
such a license.

Intellectual property and legal compliance issues can
arise when companies fail to implement a thorough li-
cense evaluation process when they consume open
source. The challenge is accentuated by the absence of
a forced to click “I agree” to the license terms before in-
stalling or using code (Gaff and Ploussios, 2012). Con-
tamination could occur when restrictively licensed
code is copied into a permissively licensed project
package or when a restrictively licensed package is
copied into a permissively licensed project. Developers
that are working under tight deadlines can easily over-

Developers of cybersecurity software often include and rely upon open source software
packages in their commercial software products. Before open source code is absorbed into
a proprietary product, developers must check the package license to see if the project is per-
missively licensed, thereby allowing for commercial-friendly inheritance and redistribu-
tion. However, there is a risk that the open source package license could be inaccurate due
to being silently contaminated with restrictively licensed open source code that may pro-
hibit the sale or confidentiality of commercial derivative work. Contamination of commer-
cial products could lead to expensive remediation costs, damage to the company's
reputation, and costly legal fees. In this article, we report on our preliminary analysis of
more than 200 open source cybersecurity projects to identify the most frequently used li-
cense types and languages and to look for evidence of permissively licensed open source
projects that are likely contaminated by restrictive licensed material (i.e., containing com-
mercial-unfriendly code). Our analysis identified restrictive license contamination cases oc-
curring in permissively licensed open source projects. Furthermore, we found a high
proportion of code that lacked copyright attribution. We expect that the results of this study
will: i) provide managers and developers with an understanding of how contamination can
occur, ii) provide open source communities with an understanding on how they can better
protect their intellectual property by including licenses and copyright information in their
code, and ii) provide entrepreneurs with an understanding of the open source cybersecur-
ity domain in terms of licensing and contamination and how they affect decisions about cy-
bersecurity software architectures.

One bad apple can spoil the bunch.

Proverb

“ ”

Technology Innovation Management Review February 2016 (Volume 6, Issue 2)

29www.timreview.ca

License Compliance in Open Source Cybersecurity Projects
Ahmed Shah, Selman Selman, and Ibrahim Abualhaol

look the licensing commitments of what they consume
unless they have policies and tools in place to prevent
contamination (Khanafer, 2015). This ease of con-
sumption increases the risk of contamination. De-
velopers need to know whether they are consuming
code that is permissively licensed (i.e., commercial
friendly) or restrictively licensed (i.e., commercial un-
friendly). In the simplest case, they can simply check
by inspecting the package license (i.e., the "readme"
file or the "LICENSE" file), but complications can arise
if a permissively licensed project silently hides code li-
censed under an incompatible restrictive license.
However, to reduce the risk of contamination, de-
velopers should not assume that the same degree of di-
ligence has been undertaken by other developers who
contributed code to another project that is now being
consumed as part of a separate package. Projects must
take care not to inherit the problems of others, which
can spread across projects in a viral manner as the
code is copied. In a 2007 survey by Saugatuck Techno-
logy, 21% of respondents felt security/open/com-
munity concerns could inhibit the adoption of open
source, while 12% felt that licensing issues and risks
were a concern (Cited in Hassin, 2007). Failure to ad-
here to the open source licensing terms can lead to
costly litigation, damage to a company’s reputation,
and cost spent to remediate contaminated code. For
example, in 2009, the Software Freedom Conservancy,
Inc. brought legal action for copyright infringement
against 14 commercial electronics distributors includ-
ing Westinghouse Digital Electronics, Best Buy, and
Samsung (Klasfelld, 2011). These companies distrib-
uted code from BusyBox (an open source tool) in their
products without adhering to the BusyBox license. The
license stated that inheritors of BusyBox must make
their own source code available to the public. Thus, li-
censing and copyright violations, in many cases result-
ing from code contamination, are substantial issues
affecting vendors of software that leverages open
source projects.

Within the cybersecurity domain, we investigated the
extent to which projects with permissive open source
package licenses (i.e., LICENSE and README files that
refer to Apache, BSD, or MIT) are contaminated with a
restrictive licensed file (GPL v1.0, 2.0, 3.0 ext). We ex-
amined more than 200 open source cybersecurity pro-
jects as an initial, exploratory study. By studying code
contamination in open source cybersecurity projects
and providing related insights about how contamina-
tion can be avoided, we ultimately seek to help de-
velopers make clean and profitable products.

Our motivation for analyzing the cybersecurity open
source domain over other open source software do-
mains comes from the authors’ cybersecurity research
exploring what tools can be used to create cybersecur-
ity products and what cybersecurity tools can support
or differentiate non-cybersecurity software product of-
ferings. In addition, cybersecurity tools are vastly varied
in type and function. Such tools include cyber-threat in-
telligence-sharing tools, software-defined radio tools,
vulnerability and exploitation tools, and anti-virus
tools.

This article is divided into four sections. First, we re-
view the literature on open source licensing; how open
source licensing can influence architecture; and how re-
strictive license contamination can lead to litigation.
Next, we outline the origins of the sample projects that
were studied and the analytical methods used. Then,
we present our results, including information on the li-
cense types found in the study; the coding languages
used; how well intellectual property rights are claimed
in the sample; cases where restrictive licenses contam-
ination occurred in permissively licensed packages;
and proposed areas for future work. We conclude with
a summary of results and recommendations.

Literature Review

Restrictive licenses are generally considered "viral" be-
cause they require a consumer of the licensed code to
distribute their own derivative source code under that
same license. “Proprietary code distributed with or
alongside GPL-licensed [open source software] as part
of a larger program or application can in many cases be
deemed a “covered work” along with the [open source
software]. This means that the entire covered work –
the proprietary code and OSS – can only be distributed
under the GPL license terms” (Gaff and Ploussios,
2012). Permissive licenses allow consumers of the open
source project to redistribute or sell the compiled bin-
ary without the need to expose any code to the public.
Generally speaking, restrictive licenses allow con-
sumers of the open source project to redistribute the
compiled binary under the condition that the source
code of the binary must be made available to the public
and that the binary and source code cannot be sold.
Not adhering to license terms in open source software
could results in a copyright infringement claim or
breach of contract, which may in turn lead to prohibi-
tion of further sales, impoundment and destruction of
combined software, and legal fees (Gaff and Ploussios,
2012).

Technology Innovation Management Review February 2016 (Volume 6, Issue 2)

30www.timreview.ca

License Compliance in Open Source Cybersecurity Projects
Ahmed Shah, Selman Selman, and Ibrahim Abualhaol

Most licenses are reciprocal licenses meaning they
force all derived works to be licensed under the same li-
cense associated with the original copy of the compon-
ent (Link, 2011). The General Public License (GPL;
gnu.org/licenses/gpl.html) is the most common and notable
example. Permissive licenses such as MIT (opensource.org/
licenses/MIT) and Apache (apache.org/licenses/) have fewer
restrictions and generally do not require the user to dis-
tribute their own derived work. Due to the variation of
terms in each license type, licenses can be incompat-
ible with each other if they are within the same open
source package. In other words, if a developer is consid-
ering using multiple types of licensed open source pro-
jects, there is a risk that the licenses will not be
compatible and that software therefore cannot be com-
bined (Lokhman et al., 2013). For instance, a package
that is licensed with Apache 2.0 is not compatible with
GPL 1.0. Therefore, GPL 1.0 code should not exist in the
Apache-licensed package's code base. In this article,
the terms “license conflict” or “contamination” refer to
a project with a permissive license contains restrictively
licensed code.

Open source licensing influencing architecture
We define derived work as the result of enhancing or
editing open source software. Depending on developer
intentions, either to distribute derived work or publish
their work while maintaining copyright ownership,
open source legality and licensing issues must be faced.
One approach, used by the Linux kernel, is the "core-
periphery pattern" (Lokhman et al., 2013). The core of
the Linux kernel owns the copyright for the core sys-
tem, while applications built around this system (i.e.,
on the periphery) can be replaced with different applic-
ations to allow any number of versions, or distribu-
tions, of Linux to be created for different purposes and
systems. This approach allows for license-compatible
customization, and thereby enables usability, scalabil-
ity, and modularity.

The main problem facing commercial companies are
the obligations associated with the derived work (Ham-
mouda et al., 2010). First, they must be aware of the li-
censes of the different components used in their
systems, and second, they must make sure all these li-
censes are compatible. However, in some cases, it is
hard to find a suitable project that has the appropri-
ately compatible licenses and, therefore, software archi-
tecture considerations arise.

Conflicts can prohibit the integration of open source
components and require extra effort to understand the
limitations of the licenses used (Link, 2011). Consider

the difference between the Lesser General Public Li-
cense (LGPL; gnu.org/copyleft/lesser.html) and the GPL li-
cense (gnu.org/licenses/gpl.html). For code under the LGPL,
the user is permitted to link it dynamically to other
components without violating or enforcing the LGPL
(Lokhman et al., 2013). In contrast, this same scenario
with the GPL requires a separate executable if the soft-
ware code is not being released. Thus, this requirement
of the GPL can affect the architecture of the entire sys-
tem, particularly when there is a mix of proprietary and
open source components. For example, instead of link-
ing components with the GPL component through con-
trol-driven communication, data-driven relationships
must be used instead (Hammouda et al., 2010). Another
approach is to use the "isolation pattern", which separ-
ates components from each other to avoid license con-
flicts (Hammouda et al., 2010). Depending on the
nature of the system (i.e., hosted, distributed, released
as open source), the system architecture must appropri-
ately accommodate licensing obligations.

Contamination leading to litigation
There are many ways that a company's product can
end up containing restrictively licensed source code,
potentially triggering GPL-related litigation. Common
violations include not distributing the source code of
derivative works or failing to add appropriate copyright
information or licenses to derivative works.

Many GPL contamination cases that lead to litigation
often go through the following process:

1. Release: a third-party developer creates original
source that is released under GPL.

2. Contamination: a commercial entity "consumes" the
GPL code and (knowingly or unknowingly) adds the
code to their commercial product.

3. Violation: the commercial entity releases their GPL-
contaminated product while not adhering to GPL
terms (i.e., they fail to make their own source code
available to the public).

4. Indictment: a company takes legal action against the
GPL violator for not complying with GPL terms.

5. Resolution: the outcome of litigation.

The outcomes of litigation can be substantial, including
but not limited to:

• Reputational damage

http://www.gnu.org/licenses/gpl.html
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://www.apache.org/licenses/
https://www.gnu.org/copyleft/lesser.html
http://gnu.org/licenses/gpl.html

Technology Innovation Management Review February 2016 (Volume 6, Issue 2)

31www.timreview.ca

License Compliance in Open Source Cybersecurity Projects
Ahmed Shah, Selman Selman, and Ibrahim Abualhaol

• Exposing customers to liability

• Threats of patent infringement for code tied to patents

• Making proprietary code open source

• Statutory damages

• Remediation costs of re-writing code

Research Method

The source code for over 200 cybersecurity projects
were downloaded which included tools for penetration
testing, forensic investigation, intrusion detection, visu-
alization, and network monitoring. We developed our
dataset of projects by sampling a subset of the tools lis-
ted from the following three primary sources:

1. Kali Linux OS distribution (Offensive Security, 2015)

2. Department of Homeland Security's list of open
source cybersecurity software (DHS, 2012)

3. Security Onion Linux OS distribution (Burks, 2015)

An overall dataset of 334 open source cybersecurity pro-
jects was created and three levels of analysis was con-
ducted:

1. Attribution: Across all 334 projects, we determined
the extent of: i) copyright information in each file, ii)
license information in each file, iii) no copyright or li-
cense attribution in each file. The purpose of this ana-
lysis was to determine how many files across all
projects have no copyright or license attribution and
also what types of license attribution were applied to
a file, if any.

2. License conflicts: Out of the 334 open source cyberse-
curity tools that we downloaded, tools for which we
could confirm the package license from the project’s
website or from the source code's package license
(i.e., “COPYING” or “LICENSE” file) were selected for
an analysis of license conflicts. The resulting subset
of 255 projects were examined for evidence of GPL
file contamination in a permissively licensed pack-
age. To look for patterns in the appearance of license
conflicts, we evaluated license conflicts against the
number of lines of code per package and the types
and number of coding languages used in each of
these projects.

3. Third-party code: Across a sample of 243 projects
where we could confirm the licenses, we assessed the
volume of third-party code as a proportion of the
total code volume in each project. To look for pat-
terns in the appearance of license conflicts, we evalu-
ated license conflicts against the lines of code per
package.

To conduct the three levels of analysis described above,
we scanned and analyzed the downloaded software
packages using Protecode's Enterprise System 4 code-
scanning engine (protecode.com/our-products/system-4/).
The analyses included determination of the number of
lines of code per package; likely third-party volume per
package; license type per package; programming lan-
guages used per package; if a copyright or license exis-
ted in a code file; and if a license conflict existed in a
package. Protecode has a database containing millions
of files from many open source projects hosted on sev-
eral forges. When scanning the downloaded code, Pro-
tecode generates signatures and hashes that it
compares against signatures of the files stored in Prote-
code's database. In this manner, Protecode's tools can
identify if there are any matching files thereby indicat-
ing a file or part of the file exists in an open source pro-
ject. Protecode also stores information regarding
copyright and licenses of the open source projects
found in the database, which will help identify any li-
cense conflicts between the open source components
identified in the scanned code.

Results

Across the 255 projects where licenses could be determ-
ined, 24% had permissive licenses. Four packages out
of the 61 permissively licensed projects were confirmed
of being contaminated with GPL code. GPL contamina-
tion was confirmed by checking if the permissively li-
censed package contained a file with a GPL attribution
(i.e., a GPL license within the file or a reference to a GPL
license within the file). The cases of GPL contamination
include permissively licensed packages that included
one or more GPL licensed files or including whole GPL
licensed packages (*.js, *.py, *.tar).

We also found other cases where GPL contamination
might have occurred, but it could not be confirmed
with high certainty. For example, two permissively li-
censed projects may have inherited GPL code (modi-
fied or un-modified) and the GPL code does not
contain a GPL reference within it. In another case, we
found information on the project website that claimed

http://www.protecode.com/our-products/system-4/

Technology Innovation Management Review February 2016 (Volume 6, Issue 2)

32www.timreview.ca

License Compliance in Open Source Cybersecurity Projects
Ahmed Shah, Selman Selman, and Ibrahim Abualhaol

that a particular package was permissively licensed;
however, when we downloaded the package, we found
that the license was, in fact, restrictive.

Figure 1 compares the permissively licensed packages
that are GPL contaminated with those that are not con-
taminated using a cluster plot of the total lines of
unique code versus lines of third-party code. The figure
shows that contaminated projects each have over
10,000 lines of third-party code and over 1,000 lines of
unique code, although no other pattern is evident in
this dataset, which contains only four cases of contam-
ination.

Package licenses
Out of the 255 projects for which licensing information
was available, 61 (24%) were found to have permissive
licenses (i.e., MIT, BSD, or Apache). BSD-licensed pro-
jects were most common, accounting for nearly a third
of permissively licensed projects and highlighting the
flexibility inherited in this license. The MIT and Apache
licenses were also common, each accounting for about
15% of the remaining permissively licensed projects. Of
the permissively licensed packages contaminated with
GPL-licensed code, two were licensed under BSD, one
was licensed under MIT, and one contained a mix of
permissive licenses.

The other 194 (76%) of 255 projects for which licensing
information was available included a restrictively li-
censed (i.e., GPL) projects. One package was found to
have a EUPL 1.1 license, which contained files that al-
luded to being GPL licensed. This package was
grouped into the restrictive license category. Also in-
cluded where packages were licensed under an LGPL
(v3, v2, or v2.1), which could be considered moder-
ately restrictive.

Figure 2 plots the number of programming languages
used in each project against the number of lines of
code for permissively and restrictively licensed pack-
ages. Figure 2 shows that packages with more than
1,000 lines of code are likely using one, two, or more
languages, whereas packages with over 100,000 lines
of code are likely using two or more programming lan-
guages. The GPL contamination boxes show the loca-
tion of permissively licensed packages with GPL
contamination. Out of the sample of 344 projects
(which included projects that had licenses that could
not be confirmed), the three most commonly used
programming languages were C, Python, and PERL.
This distribution of the four cases of GPL-code found
in permissively licensed packages shows that contam-
ination can occur regardless of the number of lan-
guages used.

Figure 1. Cluster plot of projects with permisive pack-
age licenses by lines of unique code and likely third-
party code

Figure 2. Programming languages versus total lines of
code in restrictively licensed and permissively licensed
packages, including evidence of GPL contamination in
permissively licensed packages

Technology Innovation Management Review February 2016 (Volume 6, Issue 2)

33www.timreview.ca

License Compliance in Open Source Cybersecurity Projects
Ahmed Shah, Selman Selman, and Ibrahim Abualhaol

Copyright and license information in code files
Often, when open source code is brought into projects,
what is inherited is not the entire package of another
project, but only a code snippet or a file from that pro-
ject. If intellectual property claims (copyright) or li-
censes are not embedded within the file, there is a risk
that the file could be mistakenly be used in a per-
missively licensed project, and this mistake could then
be propagated into other projects, leading to viral con-
tamination. In our dataset of 334 packages, in which we
found 151,187 files (not including binaries), 39% of the
files had no copyright information or did not refer to a
license. For the files that did have either copyright or li-
cense information, 2% percent only made reference to
a license, 43% made reference to a license and con-
tained copyright information, and 16% only had copy-
right information (Table 1). Out of the 45% that did
refer to a license, 63% of the files made reference to
GPL, and 13% were standalone (not mixed) Apache,
BSD, or MIT licensed.

Volume of third-party code
Protecode Enterprise Server 4 was used to determine
the amount of third-party code that likely exists in each
project in our subsample of 243 projects. When the Pro-
tecode software scans a file, it compares it against its
database of known third-party code. If the Protecode
software provided a suggested best match of third party
for a file, for the sake of this article, we treat the entire
file as third-party code.

Figure 3 presents the distribution of lines of code across
projects, highlighting the third-party code and also the
permissively licensed packages that are contaminated
with GPL material. Figure 4 shows the distribution of
projects by the percentage of the code within the pro-
ject that is likely from a third party. Around 145 projects
contain 0% to 10% third-party code while around 20
projects contain 90% or more third-party code. Across
all projects, the average volume of third-party code is
27%.

Table 1. Copyright and license information in 334 open source cybersecurity projects

Figure 3. Extent of third-party code in the 243 sampled
projects, ordered by total lines of code in each project

Technology Innovation Management Review February 2016 (Volume 6, Issue 2)

34www.timreview.ca

License Compliance in Open Source Cybersecurity Projects
Ahmed Shah, Selman Selman, and Ibrahim Abualhaol

Future Work

This article provided an initial, exploratory analysis of
open source cybersecurity projects to provide insight
on open source license conflicts. Our results provide de-
velopers with insights into the characteristics of open
source cybersecurity projects in terms of lines of code,
languages used, and license types. In addition, we tried
to identify the risk of permissively license projects be-
ing contaminated with GPL and the extent to which de-
velopers are adding copyright and license references to
their code.

Future work could include statistical correlation analys-
is between different attributes, investigating a greater
number of attributes (e.g., the number of contributors),
and analyzing more projects to increase the power of

the analysis in terms of detecting or ruling out the ap-
pearance of cluster patterns. Such work could lead to a
classification of contamination probabilities based on a
k-Nearest Neighbour (KNN) Algorithm.

Conclusion

We found that the open source cybersecurity com-
munity is not adding copyright information or license
references to files to claim intellectual property rights:
39% of files did not have copyright or license attribution.
We suggest that managers should implement policies of
adding copyright and licenses to their source code to en-
sure that intellectual property rights are claimed and to
also make sure that GPL source code might not accident-
ally be consumed and contaminate a commercial
product. We also found that there is no guarantee that
packages with permissive licenses are not contaminated
with restrictive licensed material: four out of 61 per-
missively licensed projects were contaminated with re-
strictive licenses. In addition, 76% of open source
cybersecurity projects had restrictive package licenses
and 24% had permissive package licenses. These find-
ings suggest that the options for reusing open source
code in the cybersecurity space are small with respect to
selling proprietary software. However, the majority of re-
strictive licenses can be monetized through comple-
mentary services of open source products. Although
much of the existing literature discusses the issue of
open source licensing, licensing conflicts, and licensing
compatibility, these studies are often light on data. In
this study, we examined a dataset of over 300 open
source cybersecurity projects and provides a stepping-
stone for further investigation in the open source cyber-
security domain. Although our findings revealed only
four cases of contamination across 344 open source cy-
bersecurity projects, the potential ramifications of such
contamination for those individual warrant further
study into how companies can mitigate this risk.

Figure 4. Histogram of number of projects versus the
portion of package that is likely third-party code

Technology Innovation Management Review February 2016 (Volume 6, Issue 2)

35www.timreview.ca

About the Authors

Ahmed Shah holds a BEng in Software Engineering
and is pursuing an MASc degree in Technology In-
novation Management at Carleton University in Ott-
awa, Canada. Ahmed has experience working in
cybersecurity research with the VENUS Cybersecur-
ity Corporation and has experience managing legal
deliverables at IBM.

Selman Selman is a Software Engineer at Synopsys
under the Software Integrity Group. He is also carry-
ing out graduate studies in Technology Innovation
Management at Carleton University in Ottawa,
Canada.

Ibrahim Abualhaol holds BSc and MSc degrees in
Electrical Engineering from Jordan University of Sci-
ence and Technology, an MEng in Technology In-
novation Management from Carleton University in
Ottawa, Canada, and a PhD in Electrical Engineering
from the University of Mississippi in Oxford, United
States. He worked for two years as a Wireless Engin-
eer at Broadcom Corporation and as a System Engin-
eer Intern at Qualcomm Incorporation in the United
States. He then worked as an Assistant Professor of
Wireless Communications at Khalifa University,
United Arab Emirates for four years. Currently, he is
a Cybersecurity R & D Engineer working on opera-
tionalizing collective intelligence with artificial intel-
ligence to improve cybersecurity. He is senior
member of IEEE, a member of Phi Kappa Phi, and a
member of Sigma Xi.

References

Burks, D. 2015. Security-Onion Project: Tools. Security Onion
Solutions. Accessed November 1, 2015:
https://github.com/Security-Onion-Solutions/security-
onion/wiki/Tools

DHS. 2012. Open Source Cybersecurity Catalog: Homeland Open
Security Technology (HOST) Project. Department of Homeland
Security (DHS) – Science and Technology Directorate. Accessed
November 1, 2015:
https://www.dhs.gov/sites/default/files/publications/csd-host-
open-soruce-cybersecurity-catalog.pdf

Gaff, B. M., & Ploussios, G. J. 2012. Open Source Software. IEEE
Computer Society, 45(6): 9–11.
http://dx.doi.org/10.1109/MC.2012.213

Hammouda, I., Mikkonen, T., Oksanen, V., & Jaaksi, A. 2010. Open
Source Legality Patterns: Architectural Design Decisions
Motivated by Legal Concerns. Proceedings of the 14th International
Academic MindTrek Conference: 207–214. New York: ACM.
http://dx.doi.org/10.1145/1930488.1930533

Hassin, K. 2007. Open Source on Trial. Open Source Business Resource,
October 2007: 15–19.
http://timreview.ca/article/66

Klasfelld, A. 2011. Westinghouse Sanctioned in Case Over Open
Source. Courthouse News Service: August 12, 2011. Accessed
February 1st, 2016:
http://www.courthousenews.com/2011/08/12/38954.htm

Khanafer, H. 2015. Q&A. Does a Software Development Firm Need an
Open Source Policy? Technology Innovation Management Review,
5(5): 45–46.
http://timreview.ca/article/897

Link, C. 2010. Patterns for the Commercial Use of Open Source: Legal
and Licensing Aspects. Proceedings of the 15th European
Conference on Pattern Languages of Programs (EuroPLoP '10):
Article No. 7. New York: ACM.
http://dx.doi.org/10.1145/2328909.2328918

Lokhman, A., Mikkonen, T., Hammouda, I., Kazman, R., & Hong-Mei,
C. 2013. A Core-Periphery-Legality Architectural Style for Open
Source System Development. Proceedings of the 46th Hawaii
International Conference on System Sciences (HICSS): 3148–3157.
http://dx.doi.org/10.1109/HICSS.2013.34

Offensive Security. 2015. Index of Kali Linux Depot of Source Code.
Offensive Security. Accessed July 2015:
http://http.kali.org/kali/pool/main

License Compliance in Open Source Cybersecurity Projects
Ahmed Shah, Selman Selman, and Ibrahim Abualhaol

Citation: Shah, A., Selman, S., & Abualhaol, I. 2016.
License Compliance in Open Source Cybersecurity
Projects. Technology Innovation Management Review,
6(2): 28–35. http://timreview.ca/article/966

Keywords: cybersecurity, open source, license,
copyright, GPL, third-party code, contamination

http://creativecommons.org/licenses/by/3.0

