
Technology Innovation Management Review January 2013

13www.timreview.ca

Sustainability in Open Source Software
Commons: Lessons Learned from

an Empirical Study of SourceForge Projects
Charles M. Schweik

Introduction

This special issue of the TIM Review is devoted to ques-
tions surrounding the idea of “sustainability” in rela-
tion to open source software. The call for papers asked
authors to connect some of Elinor Ostrom's work
(1990: tinyurl.com/b3neybk; 2005: tinyurl.com/aesc7vd; 2010:
tinyurl.com/aasko9e) related to sustainability, collective

action, and the commons and apply it to open source.
Over the last seven years, my research team and I have
been doing just that. In this article, I summarize how
we connected to Ostrom's approach to studying the
commons and report some of the important findings re-
lated to questions of sustainability in open source soft-
ware commons. The article focuses on the practical
implications of the research findings.

In this article, we summarize a five-year US National Science Foundation funded study de-
signed to investigate the factors that lead some open source projects to ongoing collaborat-
ive success while many others become abandoned. Our primary interest was to conduct a
study that was closely representative of the population of open source software projects in
the world, rather than focus on the more-often studied, high-profile successful cases. After
building a large database of projects (n=174,333) and implementing a major survey of
open source developers (n=1403), we were able to conduct statistical analyses to investig-
ate over forty theoretically-based testable hypotheses. Our data firmly support what we
call the conventional theory of open source software, showing that projects start small,
and, in successful cases, grow slightly larger in terms of team size. We describe the “virtu-
ous circle” supporting conventional wisdom of open source collaboration that comes out
of this analysis, and we discuss two other interesting findings related to developer motiva-
tions and how team members find each other. Each of these findings is related to the sus-
tainability of these projects.

The real free-rider problems in open-source software are more a
function of friction costs in submitting patches than anything else.
A potential contributor with little stake in the cultural reputation
game... may, in the absence of money compensation, think "It's
not worth submitting this fix because I'll have to clean up the
patch, write a ChangeLog entry, and sign the FSF assignment
papers...". It's for this reason that the number of contributors
(and, at second order, the success of) projects is strongly and
inversely correlated with the number of hoops each project makes
a contributing user go through.

Eric Raymond
Computer programmer, author, and open source advocate

in The Cathedral and the Bazaar

“ ”

http://books.google.ca/books?id=4xg6oUobMz4C
http://books.google.ca/books?id=LbeJaji_AfEC
http://dx.doi.org/10.1257/aer.100.3.641

Technology Innovation Management Review January 2013

14www.timreview.ca

Sustainability in Open Source Software Commons
Charles M. Schweik

Our Research Perspective

The overarching research question driving our research
is: What factors lead some open source software com-
mons to success and others to abandonment?

At the heart of this question is sustainability of open
source software, from a collaboration perspective. Why
do some programmers stay with a project while others
leave? Here we focus not only on open source volunteer
programmers – a central theme in many previous stud-
ies of open source – but paid programmers as well. Fur-
ther, a central goal of our work was to investigate not
simply high-profile, large-scale success stories (e.g.,
Linux, Apache Web Server), as was the case with much
of the early research on open source, but to get a better
handle on the unknown population of open source soft-
ware projects, which at the time we started our work
(~2005) was certainly well over 100,000 in number.

To begin our research, we built upon Elinor Ostrom
and colleague's Institutional Analysis and Development
(IAD) framework (Ostrom, 2005: tinyurl.com/aesc7vd; Fig-
ure 1). In this framework, as it applies to open source
software commons, a central unit of analysis is the indi-
vidual open source developer (diamond in Figure 1)
who we assume is a boundedly rational actor and who
periodically reflects on whether or not they should con-
tinue contributing to the project. This logic, at any
point in time, is based in part on three groups of vari-
ables or influential factors that might contribute influ-
ence the developer's decision, depicted on the left hand
side of Figure 1: i) Technological, ii) Community, and
iii) Institutional attributes of the open source software
project. In Schweik and English (2012; tinyurl.com/
ap6cxuw), we review a significant amount of theoretical
and empirical literature in an effort to identify import-
ant factors that are thought to influence other types of
commons (such as natural resource commons) or are

Figure 1. A simplified institutional analysis and development framework to support analysis of sustainability in open
source software commons. Adapted from Ostrom (2005; tinyurl.com/aesc7vd) and Schweik & English (2012; tinyurl.com/
ap6cxuw).

http://books.google.ca/books?id=LbeJaji_AfEC
http://books.google.ca/books?id=aJbacAZB1ugC
http://books.google.ca/books?id=LbeJaji_AfEC
http://books.google.ca/books?id=aJbacAZB1ugC
http://books.google.ca/books?id=aJbacAZB1ugC

Technology Innovation Management Review January 2013

15www.timreview.ca

Sustainability in Open Source Software Commons
Charles M. Schweik

thought to influence the sustainability of software pro-
jects. This included literature specifically on open
source, but also software engineering, virtual team-
work, and environmental commons or common prop-
erty (e.g., forests, fisheries, irrigation systems). The
three groups of attribute on the left side of Figure 1 list
some of the factors – but not all – we identified through
this work. To give the reader an idea of these three at-
tribute groupings, let us consider an example of each.

A Technological Attribute thought to influence a de-
veloper's decision to stay with a project or leave might
be related to "task granularity" as Yochai Benkler (2006;
tinyurl.com/6ftot3) puts it; if the development task is too
large or “coarse grained”, the developer might decide it
requires too much effort for the volunteer (or paid)
time he or she can allocate to it and might decide to
leave the project.

A Community Attribute thought to influence a de-
veloper's decision to stay or leave might be the attrib-
utes of the leader(s) of the project. Leadership is a
complicated variable or set of variables, but one aspect
of it relates to the idea of leading by example; leaders
motivate others on the team to do work by contributing
significant work themselves.

An Institutional Attribute thought to influence a de-
veloper's willingness to stay with a project or leave
might be the level of formality required to participate
on the project. A famous proponent of open source,
Eric Raymond (2001; tinyurl.com/d546xlv) described form-
alized rules for collective action in open source as “fric-
tion” that creates negative incentives for contribution
(see the introductory quote above). Space limits us to
describe all the variables we investigated in this study,
but the topics listed in the three boxes on the left side of
Figure 1 will give the reader a sense of the kinds of vari-
ables we investigated. Ultimately, we identified over 40
variables, most of which led to testable hypotheses
where a priori expectations on their influence were
known. However, in some cases, we had no idea what
relationship would be found, and no previous theory or
empirical work to suggest an expected relationship with
our dependent variable, success or abandonment of
open source software projects.

The reader should note that Figure 1 represents a dy-
namic system that changes over time. As long as a pro-
ject stays operational, there is feedback threading back
to the three sets of attributes to the left in Figure 1, and
periodically, these attributes might change in some di-

mension. These changes then have an effect or may in-
fluence the developer's feelings about the project and
their periodic reflections on whether to stay or leave,
and the cycle continues.

Methods

To begin our empirical work, we first searched for a
dataset on open source software projects that was
already collected, rather than having to build one from
scratch. Fortunately, a group called FLOSSMole
(flossmole.org) based out of Syracuse University had been
actively scraping the dominant open source project
hosting site SourceForge (sourceforge.net) and building a
database on these projects for other researchers to use
(Howison et al., 2006; tinyurl.com/abounnq). Their data-
base contained metadata about these projects, most re-
lated to Technological or Community-related attri-
butes, but with at least one Institutional variable (li-
cense used). Our initial SourceForge database, gathered
in the summer of 2006, contained 107,747 projects. In
2009, we collected a second time-slice from a different
repository called the SourceForge.net Research Data
Archive (tinyurl.com/ard7v9z), which is housed at the Uni-
versity of Notre Dame. This second dataset, represent-
ing SourceForge projects in 2009, contained 174,333
projects.

Our next step was to formulate a measure of success
and abandonment for open source software projects.
This was a challenging endeavour, which took us over a
year and a half to complete. We first identified two dif-
ferent longitudinal stages that open source projects go
through: i) an Initiation Stage and ii) a Growth Stage.
The Initiation Stage describes the period of time from
project start to the first public release of software. On
the SourceForge hosting site, it is easy to find new pro-
jects that have yet to make code available to the public
but are being actively worked on. We use the Growth
Stage to describe the period after a project's first public
release of code. One could conceptualize a “termina-
tion” or “abandonment stage” as well, but in our con-
ceptualization, that particular event can occur in either
the Initiation Stage (pre-first release) or in the Growth
Stage (post-first release).

With these two stages defined, we then set out to care-
fully define, both theoretically and empirically, a meth-
od to measure whether a project is successful or
abandoned in these two stages. We identified six cat-
egories of success and abandonment: Success in Initi-
ation (SI); Abandonment in Initiation (AI); Success in

http://www.benkler.org/Benkler_Wealth_Of_Networks.pdf
http://oreilly.com/catalog/cathbazpaper/chapter/ch05.html
http://flossmole.org/
http://sourceforge.net
http://dx.doi.org/10.4018/jitwe.2006070102
http://www3.nd.edu/~oss/Data/data.html

Technology Innovation Management Review January 2013

16www.timreview.ca

Sustainability in Open Source Software Commons
Charles M. Schweik

Growth (SG); Abandonment in Growth (AG); Indeterm-
inate in Initiation (II); and Indeterminate in Growth
(IG). Details of this initial phase of our research can be
found in English and Schweik (2007; tinyurl.com/bd29rnu).
Our classification system was later replicated independ-
ently by Wiggins and Crowston (2010; tinyurl.com/a33k9fn).
Table 1 presents our definitions and results for the 2006
SourceForge dataset; for the results from our 2009
SourceForge data, please see Schweik and English
(2012; tinyurl.com/ap6cxuw).

These datasets provided an excellent start, but our
mapping of SourceForge projects to the identified
theoretical variables (Figure 1) led to the conclusion
that many of the community and institutional variables
we wanted to investigate were not captured in these

datasets. Consequently, in 2009, we implemented a
complementary online survey for SourceForge
developers to capture these missing variables. The
challenge was that, if we contacted a random sample of
SourceForge project administrators, we expected that
we would get significant bias toward successful
collaborations that were active. To ensure enough
responses from abandoned projects, we needed to
sample a much larger number of SourceForge projects.
In the summer of 2009, we stratified our 2009 dataset
using our success/abandonment classification and
randomly selected 50,000 projects to survey. With the
help of the SourceForge organization, we emailed a
survey to the SourceForge project administrators for
each of these projects. The result: 1403 surveys
returned.

Table 1. Success and abandonment categories for open source software projects in the 2006 SourceForge database

* Successful Initiation (SI) numbers are not listed because these successes are Growth-Stage projects; including the SI category would double-count projects.

http://www.cepis.org/upgrade/files/full-VI-07.pdf
http://crowston.syr.edu/content/reclassifying-success-and-tragedy-floss-projects
http://books.google.ca/books?id=aJbacAZB1ugC

Technology Innovation Management Review January 2013

17www.timreview.ca

Sustainability in Open Source Software Commons
Charles M. Schweik

With the online survey conducted, we were able to
create a database of these 1403 projects and combine it
with the SourceForge metadata from the 2009 Notre
Dame dataset. We had a complete dataset capturing
both our dependent variable of success and
abandonment for all Initiation Stage and Growth Stage
projects, as well as measures for our independent
variables related to Technological, Community, or
Institutional attributes. The dataset captured more
than 40 independent variables, a small sample of which
are listed in Figure 1.

We used three statistical techniques to analyze the
data. To investigate relationships of individual vari-
ables, we used contingency tables to investigate the dif-
ferences in distribution for the projects as they relate to
success and abandonment. We also used two different
multivariate analytic techniques: i) classification and re-
gression trees and ii) logistic regression. Full explana-
tions of these techniques, as well as summary tables
and results are available in Schweik and English (2012;
tinyurl.com/ap6cxuw).

Selected Findings

Our analysis focused on over 40 variables thought to po-
tentially influence whether open source projects main-
tained collaboration or whether they became
abandoned. In this section, we will focus on some of
our more general or most interesting findings, with a fo-
cus on practical insights.

First, we have empirical support for the conventional
thinking of how open source software projects operate.
The vast majority of open source projects do not have
large teams, but rather have very small teams of one to
three developers. Based on careful analysis of both Initi-
ation Stage and Growth Stage data, we found that the
majority of these projects tend to start with a very small
development team of one to two developers and very
little or no user community. Then, as work progresses
and after a first release is made, a user community is es-
tablished and grows over time. The founding de-
veloper(s) lead through doing, and through the
development of a product that they often need (sup-
porting von Hippel's [2005; tinyurl.com/57xp5x] idea of
“user-driven need”), build something usable and, at the
same time, begin to generate a user community.
Through the regular open source communication chan-
nels (e.g., IRB sessions, email lists, websites, and bug
tracking systems), they build social capital between

themselves and their user base, and gradually grow
their user base, and a virtuous cycle begins. More pro-
gress is made on the code base, leading to (potentially)
a larger user base, and leading to (perhaps) an added
developer. But, our study may be some of the first em-
pirical results that actually capture this conventional
thinking of how open source collaboration operates.

We also discovered that the successful Growth Stage
projects tend to gain one developer compared to aban-
doned ones and, to our surprise, we found that over
58% of our successful projects gained a developer from
another continent. This last point is quite striking, for
we found that in many cases these new developers have
never met face-to-face in person with other developers
on the project but know and trust each other as a result
of almost strictly Internet-based interaction. These find-
ings align with what we have heard from open source
developers we have interviewed.

Based on what we have found, related to the idea of
open source project sustainability, the advice we have
for leaders of projects in the Initiation Stage is:

1. Be ready to put in the hours. Work hard toward the
creation of the first software release.

2. Demonstrate and signal good leadership by adminis-
tering your project well and clearly articulating your
vision and goals through project communication
channels (e.g., website, bug tracking system). Create
and maintain good documentation for potential new
developers and for your user community through
these channels.

3. Advertise and market your project and communicate
the plans and goals, especially if you seek new de-
velopers to move the project forward over the longer
term.

4. Realize that, in our data, successful projects are
found in either GPL-compatible or non-GPL-compat-
ible free/libre open source licenses.

5. When starting a project, consider its potential to be
useful to a substantial number of users. The more po-
tential users you have, the higher the likelihood that
one or more of those users will have relevant skills
and interests to consider joining and contributing to
your project down the road.

http://books.google.ca/books?id=aJbacAZB1ugC
http://web.mit.edu/evhippel/www/democ1.htm

Technology Innovation Management Review January 2013

18www.timreview.ca

Sustainability in Open Source Software Commons
Charles M. Schweik

Our advice for leaders of projects in the Growth Stage
(post-first release) includes:

1. Focus on the idea of creating and maintaining the
“virtuous circle”, where good initial products attract
users, which then potentially attract a new de-
veloper, which leads to more improvements. Our re-
search clearly shows that successful projects have a
potentially significant user community and that this
user community drives project continuity.

2. Make sure that there are tasks of various sizes or ef-
fort demands that people can contribute to. Success-
ful Growth Stage projects tend to have tasks for
people to work on that fit into their available sched-
ules. We remind readers of the concept of task granu-
larity by Benkler (2006; tinyurl.com/6ftot3), mentioned
earlier.

3. Surprisingly, our data suggests that competition
seems to favour success rather than hinder it. In oth-
er words, do not give up if some competition appears
on the horizon.

4. Financing helps.

5. To the extent possible, keep rules governing project
collaboration and project governance lean and in-
formal. To a large measure, the operational rules that
do exist in open source software projects are often
embedded in the version control systems that sup-
port the projects (e.g., CVS, Subversion), or are
simple group-established social norms. We found
that the vast majority of the projects we studied had
very little formalized governance and operated under
“Benevolent Dictator” type governance structures. In
other words, they tend to support our opening quote
by Eric Raymond (2001; tinyurl.com/d546xlv). Our sense
from our study that simple, agreed-upon norms tend
to drive these projects is in part because the vast ma-
jority of the projects we studied are very small teams
that need very little in terms of formal coordination.
However, we did have evidence that, as teams in-
crease in size, project governance moves toward
more formalized systems. Our evidence is fairly lim-
ited because, in our dataset, a very small proportion
of the projects studied had large teams with 10 or
more developers. But, this suggests that, if a project
team grows, the team should not hesitate to move to-
ward more formalized systems if required.

Our data analysis also led to some theoretical findings
related to sustainability of open source software pro-
jects. The two most interesting of these findings are de-
scribed below.

1. Developer motivations
Regarding questions of why developers participate in
open source software projects, our results support
much of the existing empirical work done earlier.
Across both abandoned and successful projects, a
primary motivator for participation was von Hippel's
(2005; tinyurl.com/57xp5x) user-centric need. Developers
participate because they themselves are users of the
software or because the organization they work for de-
pends on it. Other developers participate because they
learn from the process of reading others' code and then
developing new functions for the product. Others parti-
cipate as a kind of “serious leisure” where they use their
programming skills that they use for their employment
and apply it to something outside of their work domain
for their enjoyment. The one motivation that past re-
search has suggested is important – that we found was
not important – is the idea of signaling programming
skills to others, often in an effort to possibly find even-
tual employment. In our survey data, this was not re-
ported as an important factor and, in our view, it is
because the vast majority of the teams are quite small
(i.e., 1–3 people). But, perhaps the most interesting and
new finding regarding motivations for participation in
our research is our finding that projects with de-
velopers who have multiple motivations driving their
participation will be more successful than projects with
developers with only one motivation. In other words,
open source projects will be more sustainable if indi-
vidual members on the team have multiple reasons
(e.g., “I learn and am paid to participate”, or “I contrib-
ute because I am contributing to a public good and be-
cause I enjoy working on the project”) driving their
interests to contribute.

2. Sourceforge and Google as intellectual matchmakers
Some of our most careful work in this study revealed
that successful open source software projects gain a de-
veloper and that quite often this new developer is not
physically co-located with the developer(s) who foun-
ded the project, but rather, are geographically distant,
and often on another continent. This provides some
strong evidence suggesting that well-known websites
for open source software, such as SourceForge, coupled
with web search engines such as Google, create an intel-

http://www.benkler.org/Benkler_Wealth_Of_Networks.pdf
http://oreilly.com/catalog/cathbazpaper/chapter/ch05.html
http://web.mit.edu/evhippel/www/democ1.htm

Technology Innovation Management Review January 2013

19www.timreview.ca

Sustainability in Open Source Software Commons
Charles M. Schweik

lectual matchmaker of sorts through “power-law typo-
logy” (Karpf, 2010; tinyurl.com/b6cxpzb). These power-law
hubs are locations on the Internet that provide value to
their users in part because of the network effects cre-
ated because they have large crowds of similar users.
Regardless of where a programmer lives in the world,
people can find software projects that are related to this
need and, over time, build social capital with the de-
velopers and eventually join the team if they speak the
same language and demonstrate the desire and the
skills needed to collaborate.

Conclusion

In this article, we described a five-year US National Sci-
ence Foundation research study on the factors that lead
some open source projects to ongoing collaboration
and others to abandonment. To summarize, we find
strong empirical support for the conventional wisdom
of how open source software projects are sustained (see
the virtuous circle discussion above) and report two of
the most interesting findings of the study: i) that pro-
jects will be more sustainable if developers have mul-
tiple incentives driving their participation; and ii)
successful projects gain a developer and this is likely
driven through the intellectual match-making created
by search engines such as Google coupled with power-
law hubs such as SourceForge. For more detail on the
research reported here, see Schweik and English (2012;
tinyurl.com/ap6cxuw).

About the Author

Charles M. Schweik (Charlie) is an Associate Pro-
fessor with a joint appointment between the Depart-
ment of Environmental Conservation (eco.umass.edu)
and the Center for Public Policy and Administration
(masspolicy.org) at the University of Massachusetts
Amherst. He is Associate Director of the National
Center for Digital Government (ncdg.org) and the
founding member of a new “Workshop on the Study
of Knowledge Commons” on campus. His research
focuses on environmental management and policy,
public-sector information technology, and the inter-
section of those domains.

Citation: Schweik, C. M. 2013. Sustainability in Open
Source Software Commons: Lessons Learned from an
Empirical Study of SourceForge Projects. Technology
Innovation Management Review. January 2013: 13-19.

Acknowledgements

This research was supported by the U.S. National Sci-
ence Foundation under grant number 0447623. The
findings, recommendations, and opinions expressed
here, however, are my own and do not necessarily re-
flect the views of the NSF. I am also very grateful to my
research team: Robert English, Sandy Haire, Meng-Sh-
iou Shieh, and others, without whom this work would
not have been accomplished.

http://scholarworks.umass.edu/jitpc2010/1/
http://books.google.ca/books?id=aJbacAZB1ugC
http://eco.umass.edu
www.masspolicy.org
www.ncdg.org

