
Technology Innovation Management Review July 2013

50www.timreview.ca

Q&A
Sherif Koussa

A. Many of the startup executives I meet think that 
application security is only for large companies, such as 
banks and government agencies. After all, these organ-
izations have a lot of data to secure, established reputa-
tions to worry about, and trusted brands to protect. 
Startups do not have those things (yet), nor do they 
have the money to invest in anything that will not help 
them reach the next round of financing. They are fo-
cused on acquiring customers to establish better brand 
recognition. So, it is easy to understand why startups 
may be less than enthusiastic about the topic of applica-
tion security. However, in my experience, many smart 
and successful CEOs and CTOs are not so quick to dis-
miss the topic. Startups that do not pay enough atten-
tion to security in the early stages may fail to later 
capitalize on the value of what they are building now. 
Furthermore, successful startup executives recognize 
the value of security as a market differentiator. 

Unfortunately, it is not enough for startups to recognize 
that they need to care about application security; they 
need to take action. The challenge is cutting through 
the apparent complexity and building-in application se-
curity from the very beginning, while minimizing costs. 
Here, I will provide an overview of the key elements of 
application security, and I will discuss practical 
strategies that startups can use to increase the security 
of their applications throughout their lifecycles. I will 
focus on how a startup team can protect its application 
code against malicious threats, although a startup 
should also consider how security can provide oppor-
tunities to differentiate its application from the compet-
ition create opportunities in the marketplace.

Security Design and Architecture

When designing a secure application, security design 
and architecture is the key. There are six security 
cornerstones that must be kept in mind in every stage 
of the design:

1. Confidentiality: limiting access to data to only those 
who should have access to that data. 

2. Integrity: ensuring that data has not been modified 
either accidentally or maliciously, either in transit or 
at rest.

3. Availability: ensuring that the data and the systems 
serving this data are up and running when needed.

4. Authentication: confirming the identity of a user or a 
system and proving that they actually are who they 
claim to be.

5. Authorization: ensuring that the authenticated entity 
has access rights to the resources that they claim they 
have access rights to.

6. Non-repudiation: proving whether or not an entity 
actually made a transaction they claim to have made.

Once these cornerstones have been established, there 
are three design concepts that come to play: attack resi-
lience, attack tolerance, and attack resistance.

1. Resistance: the ability of the software to resist attacks. 
Principles that help with attack resistance include:

• Defence in depth (tinyurl.com/m5lkblc): building the secur-
ity of a system in layers such that result is greater 
than the sum of its individual parts.

• Attack surface (tinyurl.com/5py7w4): minimizing the at-
tack surface, which is those places where an attacker 
can start poking the application looking for holes. 

• Least privilege (tinyurl.com/29a93a): giving users and pro-
cesses only the minimum set of privileges to perform 
their function.

2. Tolerance: the ability of the software to tolerate fail-
ures. A principle that helps with attack tolerance is 
failing securely (tinyurl.com/h7vhm): a very important 
design principle that entails anticipating and hand-
ling exceptions in the software, so that the software 
does not end up in an insecure state in a fail scenario.

Q. Should startups care about application security?

http://en.wikipedia.org/wiki/Defense_in_depth_(computing)
http://en.wikipedia.org/wiki/Attack_surface
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Fail-safe


Technology Innovation Management Review July 2013

51www.timreview.ca

Q&A. Should Startups Care about Application Security?
Sherif Koussa

3. Resilience: the ability of the software to isolate at-
tacks and contain the damage resulting from these at-
tacks. A principle that helps with attack resilience is 
compartmentalization: an object-oriented program-
ming concept that entails segregating different mod-
ules of the software. If a module is breached, it may 
be contained within that module and not necessarily 
spread to the whole application.

Increasing Awareness and Knowledge

The general strategies described above can help a star-
tup improve its security posture, but they may still 
seem difficult to implement. However, it does not have 
to happen all at once. Software is developed in phases, 
and software security is built in the same way. The key 
is to take small yet measurable and progressive steps to-
wards the goal. In many cases, the first step is for the 
startup to increase its staff's awareness and knowledge 
of security issues.

Companies should review their application-security 
awareness and security design. Even just knowing that 
an issue exists or is important can help a startup man-
age the associated risk. Ira Winkler (2012; tinyurl.com/
acuofmc) argues that security awareness can be the most 
cost-effective security measure. Many code flaws hap-
pen because developers lack knowledge about proper 
secure coding and the reasons and consequences of 
writing a certain line of code in a certain way. 

A great place to start increasing awareness and know-
ledge is by taking courses, either in person or online. I 
have also seen companies do very well with "lunch and 
learns" or similar in-house seminars with experts. Star-
tup teams can also review lists of common security 
flaws, such as the "Top 10 list" published by the Open 
Web Application Security Project (tinyurl.com/3n6q9rg), 
both to increase awareness and assess their own applic-
ation's security. Deliberately insecure applications in 
various languages are also available for testing and 
learning purposes; an example is WebGoat (tinyurl.com/
62kggay) for Java-based web applications. 

Taking Action Through Controls

Once security awareness has been established, safe-
guards or countermeasures must be put in place to en-
sure that the knowledge obtained during the awareness 
phase is actually implemented in the code. Usually, ap-
plication-security controls are divided between pre-
ventative and detective controls:

1. Preventative controls: These controls include the se-
curity awareness implemented in the previous phase 
and other controls. Examples include:

• Security checklists: Checklists are the most effective se-
curity controls, yet their value is frequently underes-
timated and they are underused. A security checklist 
is simply a list of all the things a developer should 
check before committing code to the repository. 
Helpful resources include Mozilla's Secure Coding 
Guidelines (tinyurl.com/4ynfbqn) and Secure Coding QA 
Checklist (tinyurl.com/km3et2m), as well as MSDN's Se-
cure Coding Guidelines (tinyurl.com/67a6ne9). Also, 
Patch++ (patchplusplus.com) provides a visual way to im-
plement checklists for securing code patches.

• Security code review: There are many flavours of secur-
ity code review, but the simplest form is a regular peer 
code review infused with security guidelines and 
checks developed from the security checklists men-
tioned above. The most inclusive form is a full-scale se-
curity code review involving the use of automated 
tools and scripts as well as manual inspection of the 
code. Security code review is one of the best controls 
for a software development lifecycle; it can prevent the 
largest number of security flaws from making it to pro-
duction, and it provide the quickest means of remedi-
ation. For my simplified version of a security code 
review process, see Koussa (2013; tinyurl.com/kbhwy3s).

2. Detective Controls: The two most-common detective 
controls in application security are:

• Penetration testing: with this control, an internal or ex-
ternal security analyst tries to emulate what an attack-
er would do to look for vulnerabilities in a given piece 
of software and then tries to exploit them. Other 
names for this type of control include vulnerability as-
sessment, vulnerability scanning, or dynamic testing, 
but they all represent more or less the same type of 
control with different levels of thoroughness. Penetra-
tion testing is a very good control to measure the 
"hackability" of the application.

• Web-application firewalls: these are firewalls that mon-
itor traffic going in and out of a web application. De-
pending on the firewall’s capabilities, the firewall 
could potentially block inputs and outputs that do not 
meet the criteria defined in its set of rules. Web-applic-
ation firewalls are often a popular option to protect de-
precated or soon-to-be-deprecated applications. They 
are also a popular choice to provide some protection 
for applications that are deemed too costly to fix.

http://www.csoonline.com/article/712162/security-awareness-can-be-the-most-cost-effective-security-measure
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
http://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines
http://wiki.mozilla.org/WebAppSec/Secure_Coding_QA_Checklist
http://msdn.microsoft.com/en-us/library/d55zzx87(v=vs.90).aspx
http://www.patchplusplus.com/
http://www.slideshare.net/skoussa/simplified-security-code-review-process


Technology Innovation Management Review July 2013

52www.timreview.ca

Q&A. Should Startups Care about Application Security?
Sherif Koussa

Implementing Processes

Once a startup team is aware of the security threats, 
risks, and attacks that are relevant to their application, 
once they knows what needs to be done in order to 
counter these attacks, and once they are implementing 
a few controls to ensure that the awareness is practic-
ally implemented, the next phase is to implement a sys-
tematic and measurable process across all disciplines 
of the software development lifecycle to ensure that 
fewer and fewer vulnerabilities make it to production. 
There are several approaches to securing software-de-
velopment lifecycles, such as Microsoft SDL 
(tinyurl.com/y6frgge), or initiatives that help integrate se-
curity into existing models, such as BSIMM (bsimm.com) 
and OpenSAMM (opensamm.org). 

The challenge for any process is whether it actually is 
adopted by the development teams, who may not wel-
come adding additional processes if they perceive pro-
cess to interfere with the actual job of writing code 
(Turner, 2011; tinyurl.com/44xh5sw). When it comes to 
choosing a secure software development lifecycle pro-
cess or introducing new security activities into existing 
ones, I always suggest small yet progressive steps. Noth-
ing is more damaging than to shock development 
teams by suddenly imposing heavy processes.

Conclusion

Startups can no longer afford to ignore application se-
curity. It is not a question of whether or not startups 
should care about application security; they need to do 
more than care – they need to take action. However, 
taking effective steps toward secure software does not 
have to come with a hefty drain on the startup’s budget 
or productivity levels. On the contrary, some startups 
are using software security as a marketing differentiator 
in an age when clients are looking for more privacy and 
demanding evidence of privacy controls implemented 
by the organization.

Recommended Reading

• "Application Security Architecture" (Simhadri, 2001; 
tinyurl.com/nyu7lzc)

• Software Security Engineering: A Guide for Project 
Managers (Allen et al., 2008; tinyurl.com/lua92tb)

• "Architecture and Design Considerations for Secure 
Software" (SwA Forum and Working Groups, 2012; 
tinyurl.com/mmx928h)

About the Author

Sherif Koussa is Principal Application Security Con-
sultant and founder of Software Secured, an applica-
tion security firm. He has spent 14 years in the 
software development industry, with the last six 
years focused on testing application security, assess-
ing security, and teaching developers to write secure 
code. He worked on the OWASP security teaching 
tool WebGoat 5.0, helped SANS launch their GSSP-
JAVA and GSSP-NET programs, and wrote the blue-
prints of the Dev-544 and Dev-541 courses. In addi-
tion, he authored courseware for SANS SEC-540: 
VOIP Security. Sherif leads both the OWASP Ottawa 
Chapter and the Static Analysis Code Evaluation Cri-
teria for WASC. He has performed security code re-
views for three of the five largest banks in the United 
States. Before starting Software Secured, Sherif 
worked on architecting, designing, implementing, 
and leading large-scale software projects for For-
tune 500 companies, including United Technolo-
gies, and other leading organizations such as Nortel 
Networks, March Healthcare, Carrier, Otis Elevators, 
and NEC Unified Communications.

Citation: Koussa, S. 2013. Q&A. Should Startups Care 
about Application Security? Technology Innovation 
Management Review. July 2013: 50–52. 

Keywords: cybersecurity, application security, 
software security, training, checklists, startups, code 
reviews, detection, prevention, design, architecture

http://www.microsoft.com/security/sdl/default.aspx
http://bsimm.com/
http://www.opensamm.org/
http://radar.oreilly.com/2011/05/process-kills-developer-passion.html
http://www.giac.org/paper/gsec/2720/application-security-architecture/104640
http://www.amazon.ca/books/dp/032150917X
http://buildsecurityin.us-cert.gov/sites/default/files/architecture-and-design_pocketGuide_v2%200_05182012_postonline.pdf
http://creativecommons.org/licenses/by/3.0



